Menu

Análise Matemática III - Matemática - Sem Ramos - Especialidades


7.5
ECTS / Credit Units
Year: 2 / 1º Semestre
Plan: 2015/16
Scientific Area: MAT
Level: Intermédio

Semestral Hour Load

Theorical: 48.00
Theorical-Pratical: 32.00
Pratical and Laboratorial:
Fieldwork:
Seminar:
Internship:
Tutorial:

 

Assigned Internship Hours:
Assigned Projects Hours:
Assigned Fieldwork Hours:
Assigned Study Hours:
Assigned Evaluation Hours:
Others:

Degree having this Course

Degree - Branch Degree Plan Year
Matemática - Sem Ramos - Especialidades 2015/16

Teaching Staff

Maribel Gomes Gonçalves Gordon
Maribel Gomes Gonçalves Gordon


Responsibilities:
Regência
Responsável pelas Pautas
Ensino teórico
Ensino teórico-prático

Course Information

Course Objectivs

O1 To familiarize the student with the theory of integration in R^n and with its main applications.

O2 To equip students with the basic theoretical and pratical notions of Fourier Analysis which will then be used in subsequent curricular units.

Evaluation Criteria

Classification Type: Quantitative (0-20)
Evaluation Methodology: Oral and written exposition of the currricular unit's syllabus. Discussion and solving exercises and concrete problems in small groups or individually. The evaluation of the curricular unit will focus on two written tests, each with a weight of 45% of the final grade, and a coursework, worth 10% of the final grade. The coursework will be about solving a theoretical exercise or a theorem, assigned randomly to each student. In this way the student can assess his progress and change his studying strategies if necessary. During the supplementary Exam period students who have not successfully completed the curricular unit can choose between retaking one of the tests or doing an exam which includes all the contents of the curricular unit. The importance of this exam is to test the student's ability to relate the notions and results introduced throughout the curricular unit.

Program Resume (get program detail)

Main Bibliography

Agudo, D. (1969). Lições de Análise Infinitesimal, Vol I e II,. Escolar Editora.
Ávila, G. S. S. (1979). Cálculo III-Diferencial e Integral. Livros Técnicos e Científicos Editora S.A..
Campos Ferreira, J. (2002). Introdução à Análise em IR^n. IST.
Kaplan, W. (1972). Cálculo Avançado, Vol II. Editora da Universidade de S. Paulo.
Lang, S. (1980). Cálculo, Vol II. Livros Técnicos e Científicos Editora.
Piskounov N. (1986). Cálculo Diferencial e Integral, Vol. I e II. Lopes da Silva Editora.
Swokowski, E. W. (1983). Cálculo com Geometria Analítica, Vol II. McGraw-Hill.
Courant, R., John, F. (1989). Introduction to Calculus and Analysis I. Springer.
Dieudonné, J. (1972). Eléments d'Analyse I. Hermann, Paris.
Cartan, H. (1972). Cours de Calcul Différentiel. Hermann, Paris.
Lang, Serge (1993). Real and Functional Analysis. Springer.

Other Biographical Sources / Support Documents

Student Support

Associated Links

Comments

Forum

Connect to Forum Análise Matemática IIILink Externo