Lógica Computacional - Matemática - Sem Ramos - Especialidades

ECTS / Credit Units
Year: 2 / 1º Semestre
Plan: 2015/16
Scientific Area: MAT
Level: Intermédio

Semestral Hour Load

Theorical: 48.00
Theorical-Pratical: 32.00
Pratical and Laboratorial:


Assigned Internship Hours:
Assigned Projects Hours:
Assigned Fieldwork Hours:
Assigned Study Hours:
Assigned Evaluation Hours:

Degree having this Course

Degree - Branch Degree Plan Year
Engenharia Informática - Sem Ramos - Especialidades 2010/11
Matemática - Sem Ramos - Especialidades 2015/16

Teaching Staff

Maurício Duarte Luís Reis
Maurício Duarte Luís Reis

Responsável pelas Pautas
Ensino teórico
Ensino teórico-prático

Course Information

Course Objectivs

1 To introduce the basic theoretical concepts concerning logical reasoning and logical systems. To present several deductive systems both for propositional logic and to predicate logic. To expose the interrelation between the semantic and the deductive systems associated to those two logical systems.

2 To highlight the interrelation between formal logic and computation (namely by presenting a programming language (Prolog) which uses the concept of logical deduction as its computation engine).

Evaluation Criteria

Classification Type: Quantitative (0-20)
Evaluation Model: A
Evaluation Methodology: The assessment is made by means of two (individually) written tests and a teamwork. The first and second tests have the weights of 40% and 45% in the final grade, respectively, and the teamwork has the weight of 15% in the final grade.

Program Resume (get program detail)

Main Bibliography

Hamilton, A.G. (1988). Logic for Mathematicians. Cambridge University Press.
E. Mendelson (1997). Introduction to Mathematical Logic. Chapman & Hall.
J. H. Gallier (1986). Logic For Computer Science: Foundations of Automatic Theorem Proving. John Wiley & Sons.
U. Nilsson and J. Maluszynski (1995). Logic, Programming and Prolog. John Wiley & Sons.

Other Biographical Sources / Support Documents

J. Carmo (2005). Noções Básicas para a Matemática do Discreto. Universidade da Madeira.
M. Fitting (1996). First-Order Logic and Automated Theorem Proving. Springer.
D. M. Gabbay (2007). Logic for Artificial Intelligence and Information Technology. King's College Publications.
L. Sterling and E. Shapiro (1986). The Art of PROLOG: Advanced Programming Techniques. MIT Press.
Oliveira, A.J.F. (2010). Lógica & Aritmética: Uma introdução à lógica, matemática e computacional. Gradiva.
A. J. F. Oliveira (1980). Lógica Elementar. AEFCL.
A. J. F. Oliveira (1981). Teoria dos Conjuntos: Indutiva e Axiomática (ZFC). Livraria Escolar Editora.
M. D. L. Reis Folhas de apoio às aulas de lógica computacional.

Student Support

2ª Feira das 15h30 às 16h30 e 6ª Feira das 9h00 às 10h30 e das 11h30 às 12h30 (Gabinete 2.89, FCEE).

Associated Links e


2ª Feira das 15h30 às 16h30 e 6ª Feira das 9h00 às 10h30 e das 11h30 às 12h30 (Gabinete 2.89, FCEE).


Connect to Forum Lógica ComputacionalLink Externo