Menu

Opção ( Teoria e Fundamentos da Computação ) - Matemática - Sem Ramos - Especialidades


7.5
ECTS / Credit Units
Year: 3 / 2º Semestre
Plan: 2015/16
Scientific Area: MAT
Level: Intermédio

Semestral Hour Load

Theorical: 48.00
Theorical-Pratical: 32.00
Pratical and Laboratorial:
Fieldwork:
Seminar:
Internship:
Tutorial: 0.00

 

Assigned Internship Hours:
Assigned Projects Hours:
Assigned Fieldwork Hours:
Assigned Study Hours:
Assigned Evaluation Hours:
Others:

Degree having this Course

Degree - Branch Degree Plan Year
Engenharia Informática - Sem Ramos - Especialidades 2010/11
Matemática - Sem Ramos - Especialidades 2015/16

Teaching Staff

Maurício Duarte Luís Reis
Maurício Duarte Luís Reis


Responsibilities:
Regência
Responsável pelas Pautas
Ensino teórico
Ensino teórico-prático

Course Information

Course Objectivs

1 Study of the limits of computing.

2 Practice of programming with "go to's" and of definition of functions.

3 To acquire knowledge of the algebraic and logical foundations of some of the programming paradigms already studied by the students (imperative; recursive; and rewrite and use of abstract types).

Evaluation Criteria

Classification Type: Quantitative (0-20)
Evaluation Methodology: Theoretical expository lectures, illustrating the concepts through various examples. Practical problem solving classes. Criteria: Three tests: the first one with a weight of 35% in the final classification, the second with a 25% weight in final classification and the third with a weight of 40% in the final classification.

Program Resume (get program detail)

Main Bibliography

A.G. Hamilton (1988). Logic for Mathematicians. Cambridge University Press.
Carmo, J., Gouveia, P e Dionísio, F. (2013). Elementos de Matemática Discreta. College Publications.
N.J. Cutland (1980). Computability - An Introduction to Recursive Function Theory. Cambridge Press.
A. Sernadas & C. Sernadas (1999). Fundamentos Algébricos da Engenharia da Programação. Instituto Superior Técnico.
G. Boolos e R. Jeffrey (1990). Computability and Logic. Cambridge University Press.
D. Bridges (1994). Computability: A Mathematical Sketchbook. Springer-Verlag.
B.F. Chellas (1980). Modal Logic: An Introduction. Cambridge University Press.
F. Coelho e J.P. Neto (2010). Teoria da Computação - Computabilidade e Complexidade. Escolar Editora.
M. Davis (1983). Computability and Unsolvability. Dover.
M. Davis e E. Weyuker (1983). Computability, Complexity and Languages. Academic Press.
P. Dume (1991). Computability Theory: Concepts and Applications. Ellis Horwood.
H. Ehrig e B. Mahr (1985). Fundamentals of Algebraic Specification I. Springer Verlag.
R.L. Epstein e W.A. Carnielli (1999). Computability: computable functions, logic and the foundations of mathematics. Wadsworth.
R. Goldblat (1982). Axiomatising the Logic of Computer Programming. Springer.
R. Goldblat (1992). Logics of Time and Computation. CSLI.
V.J. Rayward-Smith (1995). A First Course in Computability. McGraw-Hill (computer Science Texts).
C. Sernadas (1993). Introdução à Teoria da Computação. Editorial Presença.
A. Sernadas e C. Sernadas (2012). Fundamentos de Lógica e Teoria da Computação. College Publications.

Other Biographical Sources / Support Documents

Student Support

Associated Links

Comments